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How Is the Dynamics Model Used? 
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Pneumatic Joints



Hardware Platforms
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Three different modeling approaches to enable control

1. First principles modeling (based on physical 
phenomenon).

2. Adapting unknown terms in dynamics. 

3. Fully learned models.



First Principles Modeling
for Control



First Principles Models
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Kinematic Modeling

Allen, T. F., Rupert, L., Duggan, T. R., Hein, G., & Albert, K. (2020, May). Closed-Form Non-Singular Constant-Curvature Continuum 
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Kinematic Modeling
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Assumptions:
• Piecewise constant curvature



Pneumatically Actuated Robot Dynamics
(using Euler-Lagrange Dynamics)
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Where:
• L is called the Lagrangian
• T is kinetic energy 
• V is potential energy



Model Mass as a Series of Disks
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Let each disk represent a section of the continuum joint with some 
mass and rotational inertia. 

Dissertation - Hyatt, P. E. (2020). Robust Real-Time Model Predictive Control for High Degree of Freedom Soft Robots. 
(with a journal paper under review)



Kinematics (location and velocity) of each Disk
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Soft Robot Modeling and Estimation
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Now T (kinetic energy) for a single disk can 
be written as a function of time derivative of 
the generalized coordinates:
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Soft Robot Modeling and Estimation
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Soft Robot Modeling and Estimation

For potential energy P, we just need the center of mass of 
each continuum segment as a function of our generalized 
coordinates:

If “G” is the gravity vector expressed in the same frame as “p”, 
then potential energy “V” can be written as:

Dissertation - Hyatt, P. E. (2020). Robust Real-Time Model Predictive Control for High Degree of Freedom Soft Robots. 
(with a journal paper under review)



Pneumatically Actuated Robot Dynamics
(using Euler-Lagrange Dynamics)
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Where:
• M is the mass matrix in the generalized coordinate space
• C is the Coriolis and centripetal terms
• g is the torque due to gravity 
• Tau is the friction AND parasitic torque AND actuation torque from pressure



Pressure Dynamics

p
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Thread-Disk Model Preview
• In collaboration with Dr. Joshua Schultz at the University of Tulsa

• Although lumped models, extra degrees of freedom allow it to bend, 
buckle, and twist. 



First Principles Modeling for Control

• Pros –
• Intuition behind model and its meaning for control
• Can easily add terms (like friction or parasitic torque)
• Can look at dominant terms in model
• Clear methods for system ID 
• Likely makes proving stability much easier

• Cons -
• No guarantee that your model is accurate enough for control
• Can take lots of work to develop a completely new model (disk-thread)

• And may still not represent the system well
• Still requires collecting data to do system ID (although not as much as ML)
• May not be tractable for control



Adapting Unknown 
Dynamics



Model-based Control Still Gives Steady State Error
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Due to Model 
Error
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Model Reference Adaptive Control (MRAC)
Let control be the following:
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Model Reference Adaptive Control (MRAC)

● We can rewrite our dynamics model in terms 
of a regressor matrix, and an unknown set of 
parameters in the vector “a”

● Only the regressor (Y) is needed
● Usually starts with form from first 

principles model, but can add whatever 
terms we think are relevant.

● Provably stable convergence to the 
reference trajectory

● Given enough control authority, you can 
make your system behave like whatever 
“reference” system you chose
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MRAC – what’s the catch?

What about terms that don’t show up in the regressor? 
(because we don’t know how to express them?)
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MRAC + MPC = MRPAC

Disturbances to linear model
in general when doing MPC 
alone.

Disturbances that include a
dynamics term based on our
regressor AND the adaptive 
control term “a” for MRAC+MPC

Can we combine the robustness of model-based MPC, with the 
adaptation of unknown terms from MRAC?



Comparison of Control with Three Different Methods

• Model predictive control (MPC, model-based approximation for optimal control)
• Model reference adaptive control (MRAC)
• Model reference adaptive control + MPC (MRPAC)

Comparisons:
1. with a parameter mismatch (in inertia) – sim

2. with a model mismatch (in spring return equilibrium position) – sim

3. on real hardware where there is both parameter and model mismatch



Effect of Model Mismatch
(significant error in inertia)
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Model parameter error

(e.g incorrect estimates of 
length, mass, stiffness, and/or 
inertia)



Effect of Structural Mismatch
(error in equlibrium config)
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Offset Force/Torque 

(e.g. wrong spring equilibrium 
value)



Hardware 
Results
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Online Adaptive Modeling for Control

• Many of the same pros and cons of modeling based on first principles … 
• Pros -

• Don't need to accurately know all terms in model (we'll adapt them over time)
• Can adapt parameters based on tracking error (MRAC) instead of model error 

alone

• Cons -
• Still have to identify or guess the form of the regressor terms 
• Adaptive control alone is not robust to unmodeled terms (like hysteresis, 

friction, choked/unchoked flow in pneumatics) 



Fully Learned
Models



Current State-of-the-Art for Large Scale Soft Robot Manipulation

• Results involve years of work using first principle models, hand-tuned controllers
• THAT’S NO GOOD if …

• Every soft robot platform is different from another
• Every platform still requires significant system identification
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Learned Discrete-Time Models

xk

DNNuk

xk+1
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Learned DNN models for control

39Gillespie, M. T., Best, C. M., Townsend, E. C., Wingate, D., & Killpack, M. D. (2018, April). Learning nonlinear dynamic models of soft robots for model 
predictive control with neural networks. In 2018 IEEE International Conference on Soft Robotics (RoboSoft) (pp. 39-45). IEEE.



Extension of Learned DNN models for 
Multi-DoF Control

• Use DNN to approximate –

• Then dynamic model can be written as follows:
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Limitations

1. Using convex solver, still 
slow if want more joints

2. Not really making use of 
fast GPU evaluation

3. Cannot represent 
nonlinear effects over a 
long time horizon
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Linear/Nonlinear EMPC
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Learned Models for Control 

• Pros
• Just collect data and hit "go“
• Can use GPUs for fast evaluation (and solution for MPC) 
• Can easily represent nonlinear models 

• Cons
• Questions about scalability for realtime evaluation vs accuracy 
• Picking the right DNN architecture matters a lot 
• Collecting "useful" data to get good models for control is difficult
• Lack of intuition (explainable AI could help) 
• No guarantees about stability or even generality of model 



Acknowledgements

Robotics and Dynamics Lab 46

Work funded by a NASA 
Space Technology Research 
Grant under the Early 
Career Faculty program

Work also funded under a SBIR Phase II grant in collaboration with Pneubotics
at Otherlab

Work funded by a NSF EFRI program



Thank You


