Simplifying Kinematic Models through Geometric Constraints

Dr. Laura H. Blumenschein Department of Mechanical Engineering Purdue University Design through geometric constraints and simplified kinematic models

- High link between **morphology** and **behavior** of soft robots
- Modeling can be a useful design tool, if models are simple enough
- Geometric constraints create simple building blocks that can be repeated to create complex behaviors
- Combination of simplified modeling and geometric constraints yields design principles for creating complex and useful kinematics from compliant systems

Applying geometric constraints to simplify kinematic models

Obstacle interaction to decrease uncertainty

Geometric models of general actuation

Design of soft delta mechanisms

Greer, et al (2020). "Robust navigation of a soft growing robot by exploiting contact with the environment," *IJRR*. Blumenschein, et al (2020). "Geometric Solutions for General Actuator Routing on Inflated-Beam Soft Growing Robots," *arXiv preprint arXiv:2006.06117*.

Blumenschein, et al (2019) "Generalized Delta Mechanisms from Soft Actuators," RoboSoft.

Introduction Pneumatic Tip-Extending Soft Robot

Growing Affects Environmental Interactions

Question: How do we harness environment interactions to improve navigation?

Useful Obstacle Interaction Behavior

Environment passively guides the robot

Varying the Initial Contact Angle

Building an Obstacle-Aided Navigation Model: Robot State

- Robot state = pivot points
- Pivot points (two types):
 - Obstacle contact
 - Pre-made turn
- Obstacle contacts added as encountered

Building an Obstacle-Aided Navigation Model: Kinematics

Free-Growth Differential Kinematics:

$$\dot{\vec{c}}_n = u \frac{1}{||\vec{c}_n - \vec{c}_{n-1}||} (\vec{c}_n - \vec{c}_{n-1})$$

Obstacle Contact Differential Kinematics:

$$\dot{\vec{c}}_n = u \frac{||\vec{c}_n - \vec{c}_{n-1}||}{\hat{t} \cdot (\vec{c}_n - \vec{c}_{n-1})} \hat{t}$$

 $u\left(\frac{m}{s}\right)$ is controlled growth rate

Model Validation: Navigation by Obstacles Only

Obstacle-Aided Navigation of a Soft Growing Robot

Joseph D. Greer¹, Laura H. Blumenschein¹, Allison M. Okamura¹, and Elliot W. Hawkes²

Stanford University
 University of California, Santa Barbara

Adding in Steering

Uniformly shorten one side

Planning Robot Paths to Intelligently Use Obstacle Contacts

Nominal design: $(\underline{l}_1, \underline{\theta}_1, \dots, \underline{l}_m, \underline{\theta}_m)$ Manufacturing Error

Built design: $(l_1, \theta_1, \dots, l_m, \theta_m)$

Planning Objective:

Find nominal design with highest expectation of reaching desired target given obstacle interactions

Planning In a Cluttered Environment

Planning In a Cluttered Environment

Applying geometric constraints to simplify kinematic models

Obstacle interaction to decrease uncertainty

Geometric models of general actuation

Design of soft delta mechanisms

Greer, et al (2020). "Robust navigation of a soft growing robot by exploiting contact with the environment," *IJRR*. Blumenschein, et al (2020). "Geometric Solutions for General Actuator Routing on Inflated-Beam Soft Growing Robots," *arXiv preprint arXiv:2006.06117*.

Blumenschein, et al (2019) "Generalized Delta Mechanisms from Soft Actuators," RoboSoft. How do we achieve a desired shape of a growing robot through active actuation?

Designing Active Steering Tendon Actuation

L. Gan, **L. H. Blumenschein**, Z. Huang, A. M. Okamura, E. W. Hawkes, and J. Fan (Accepted) 3D Electromagnetic Reconfiguration Enabled by Soft Continuum Robots. IEEE Robotics and Automation Letters, 2020.

Designing Active Steering Pneumatic Actuation

M. M. Coad, L. H. Blumenschein, S. Cutler, J. A. Reyna Zepeda, N. D. Naclerio, H. El-Hussieny, U. Mehmood, J.-H. Ryu, E. W. Hawkes, and A. M. Okamura (2020) *Vine Robots: Design, Teleoperation, and Deployment for Navigation and Exploration.* IEEE Robotics and Automation Magazine.

Designing Active Steering

J. D. Greer, T. K. Morimoto, A. M. Okamura, and E. W. Hawkes. Series Pneumatic Artificial Muscles (sPAMs) and Application to a Soft Continuum Robot. ICRA 2017. A Soft, Steerable Continuum Robot that Grows via Tip Extension. Soft Robotics, in press.

Creating More Complex Shapes

20

General Actuator Kinematics Uniform Actuation

General Actuator Kinematics

Geometric Constraint: Path Length

Inner helix arc length is shortened relative to the outer helix:

$$\lambda = \frac{\sqrt{b^2 + R_i^2}}{\sqrt{b^2 + R_o^2}}$$

General Actuator Kinematics Geometric Constraint: Cross-Sections

Tube diameter separates inner and outer helices:

 $D = R_o - R_i$

Tangent vectors are offset by twice the actuator angle:

 $T_o(t) \cdot T_i(t) = \cos 2\theta$

$$\cos 2\theta = \frac{b^2 + R_i R_o}{\sqrt{b^2 + R_i^2} \sqrt{b^2 + R_o^2}}$$

General Actuator Kinematics Uniform Actuation Kinematics

 $\lambda = 1$

Đ

General Actuator Kinematics

Model Validation: Helices

Angle, θ

General Actuator Kinematics Model Validation: Helices

General Actuator Kinematics Generalizing Beyond Helices

$$\lambda = 0.5$$

$$D = 0.5$$

$$\theta: 10^{o} \rightarrow 5^{o} \rightarrow 10^{o}$$

General Actuator Kinematics Generalizing Beyond Helices

General Actuator Kinematics Generalizing Beyond Helices

Transformation along a helical segment:

$$T_{c}(s) = \begin{bmatrix} \frac{R^{2}}{L^{2}}\cos\frac{\Delta\ell_{\lambda}}{L} + \frac{b^{2}}{L^{2}} & \frac{-R}{L}\sin\frac{\Delta\ell_{\lambda}}{L} & \frac{Rb}{L^{2}}\left(1 - \cos\frac{\Delta\ell_{\lambda}}{L}\right) & \frac{R^{2}}{L}\sin\frac{\Delta\ell_{\lambda}}{L} + \frac{b^{2}}{L}\frac{\Delta\ell_{\lambda}}{L} \\ \frac{R}{L}\sin\frac{\Delta\ell_{\lambda}}{L} & \cos\frac{\Delta\ell_{\lambda}}{L} & \frac{-b}{L}\sin\frac{\Delta\ell_{\lambda}}{L} & R\left(1 - \sin\frac{\Delta\ell_{\lambda}}{L}\right) \\ \frac{Rb}{L^{2}}\left(1 - \cos\frac{\Delta\ell_{\lambda}}{L}\right) & \frac{b}{L}\sin\frac{\Delta\ell_{\lambda}}{L} & \frac{b^{2}}{L^{2}}\cos\frac{\Delta\ell_{\lambda}}{L} + \frac{R^{2}}{L^{2}} & \frac{Rb}{L}\left(\frac{\Delta\ell_{\lambda}}{L} - \sin\frac{\Delta\ell_{\lambda}}{L}\right) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where
$$L = \sqrt{R^2 + b^2}$$
 and $\Delta \ell_{\lambda} = \Delta \ell \sqrt{\frac{\lambda^2 + 2\lambda \cos 2\theta + 1}{2(1 + \cos 2\theta)}}$ (along the centerline)

General Actuator Kinematics Model Validation: Static Shapes

RMSE = 0.45 cm

General Actuator Kinematics

Model Validation: Pneumatic Actuation

General Actuator Kinematics

Model Validation: Pneumatic Actuation

32

General Actuator Kinematics Shape Matching Algorithm

• Find θ , λ fit for each section of target shape to minimize error

• Consider the best fit for next *n* unfit sections

• Save the θ , λ for the next segment only

• Repeat for length of target shape

General Actuator Kinematics

Matching Desired Shapes

RMSE = 6.88 mm

General Actuator Kinematics Growth and Actuation

During growth \rightarrow

\leftarrow After growth

Applying geometric constraints to simplify kinematic models

Obstacle interaction to decrease uncertainty

Greer, et al (2020). "Robust navigation of a soft growing robot by exploiting contact with the environment," IJRR.

Geometric models of general actuation

Design of soft delta mechanisms

Blumenschein, et al (2019) "Generalized Delta Mechanisms from Soft Actuators," RoboSoft.

Blumenschein, et al (2020). "Geometric Solutions for General Actuator Routing on Inflated-Beam Soft Growing Robots," arXiv preprint arXiv:2006.06117. Component Actuator: Soft Bellows

Multi-material polyjet printing (Agilus and Digital ABS)

Change length through bending (and stretching) wall material

Total length change 340%

10mm

Component Actuator: Soft Bellows

Jacobian Model

$$\vec{F_o} = \mathbf{J} * \vec{P} = \sum_{i=1}^{n} P_i A_i \hat{u_i}$$
$$\mathbf{J} = A[\hat{u_1} \hat{u_2} \dots \hat{u_n}]$$
$$\hat{u_i} = \begin{bmatrix} \cos(\frac{2\pi}{n}(i-1) + \theta_o) \\ \sin(\frac{2\pi}{n}(i-1) + \theta_o) \end{bmatrix}$$

Force Workspace

$$\vec{F_o} = \mathbf{J} * \vec{P} = \sum_{i=1}^{n} P_i A_i \hat{u}_i$$

$$\mathbf{J} = \left[\mathbf{A}_i \hat{u}_1 \hat{u}_2 \dots \hat{u}_n \right];$$

$$\hat{u_i} = \left[\frac{\cos(\frac{2\pi}{n}(i-1) + \theta_o)}{\sin(\frac{2\pi}{n}(i-1) + \theta_o)} \right]$$

$$A = 54.4 \text{mm}^2; \theta_o = -56^o$$

$$R^2 = 0.964$$

Increasing Component Actuators

Applying geometric constraints to simplify kinematic models

Obstacle interaction to decrease uncertainty

Geometric models of general actuation

Design of soft delta mechanisms

Blumenschein, et al (2019) "Generalized Delta Mechanisms from Soft Actuators," RoboSoft.

Greer, et al (2020). "Robust navigation of a soft growing robot by exploiting contact with the environment," *IJRR*. Blumenschein, et al (2020). "Geometric Solutions for General Actuator Routing on Inflated-Beam Soft Growing Robots," *arXiv preprint arXiv:2006.06117*.

Conclusions

- Can develop building blocks for design and modeling through observation of heuristics, decomposition of complex designs, or targeted design.
- Created models predict behavior well enough to design more complex interactions
- The overall accuracy is limited by the assumptions and simplifications made when applying the geometric constraints
- In the future, applying methods like these can lead to more rapid prototyping and understanding of new soft robotic functions

Thank You

Joseph Greer (Stanford)

Allison Okamura (Stanford)

Elliot Hawkes (UCSB)

Ron Alterovitz (UNC, Chapel Hill)

Margaret Koehler(Stanford)

Nathan Usevitch (Stanford)

Caleb Rucker (UT, Knoxville)

Yiğit Mengüç (Facebook Reality Labs)

This work supported by:

Scientific Research

TOYOTA RESEARCH INSTITU

facebook Reality Labs

Questions?

