
Model	your	robot	for	control,	and	not	for	simulation!	
Insights	from	a	control	theoretic	perspective

Cosimo	Della	Santina
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What About Dynamic Control?

(i.e. High speed or high inertias or non negligible interactions or ...)
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Persistent
oscillations

What to correct it
when it does not work?

Why does it work?
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Della Santina et al. "Exact task execution in highly under-actuated soft limbs: an operational space based approach” RAL 2019
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Della Santina et al. "Exact task execution in highly under-actuated soft limbs: an operational space based approach” RAL 2019
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A straightforward solution!
Just take a less
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Renda et al. “Discrete Cosserat
Approach for Multi-Section Soft
Robots Dynamics” TRO 2016

Coevoet et al. “Software toolkit for
modeling, simulation and control of
soft robots” Advanced Robotics 2017

⌧

Della Santina et al. "Exact task execution in
highly under-actuated soft limbs: an
operational space based approach” RAL 2019
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All	kinds	of	pathological	behaviors	
around	the	straight	configuration

Father	of	all	sins:	singular	Jacobian

Singular	and	non	linear	impedance Singular	input	field

Singular	inertia	matrix



Model Based Feedback Controller

Della	Santina,	Cosimo,	Antonio	Bicchi,	and	Daniela	Rus.	"On	an	improved	state	parametrization	for	soft	robots	with	piecewise	constant	curvature	and	its	use	in	
model	based	control."	IEEE	Robotics	and	Automation	Letters 5.2	(2020):	1001-1008.
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The configuration manifold
is a cup, not a sphere
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Li	S.,	[…],	Della	Santina C.,	et	al.	"Dynamic	
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Hughes,	Josie,	Cosimo	Della	Santina,	and	
Daniela	Rus.	"Extensible	High	Force	
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Exploration." RoboSoft 2020
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20x

. . . and large scale soft locomotion!

Li	S.,	[…],	Della	Santina C.,	et	al.	"Dynamic	control	of	soft	robots	with	internal	constraints	in	the	presence	of	obstacles." Submitted	to	SoRo
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in the Real World
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New

Sensors



Kirigami	enables	a	simple,	rapid	approach	for	sensorizing	soft	robots

No materials handling or formulation required: sensors are laser cut and done

RL Truby*, C. Della Santina*, D. Rus. IEEE Robotics and Automation Letters, 2020. Accepted for IEEE ICRA 2020.

Arm fabrication via lost-wax casting  

Electrically conductive silicone (Silex): 
Shore A hardness 65±5, volume resistivity ~5 Ω-cm  

Circle 45/-45 1D 0/90

(Hypothesis: Sensor response dependent on cut pattern)

Sensor design and fabrication 







RL Truby*, C. Della Santina*, D. Rus. IEEE Robotics and Automation Letters, 2020. Accepted for IEEE ICRA 2020.



RL Truby*, C. Della Santina*, D. Rus. IEEE Robotics and Automation Letters, 2020. Accepted for IEEE ICRA 2020.
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RL Truby*, C. Della Santina*, D. Rus. IEEE Robotics and Automation Letters, 2020. Accepted for IEEE ICRA 2020.

*Gray lines represent transient configurations

𝑞"# = prediction; 𝑞
# = ground truth

Prediction   |   Ground truth

4x



Random actuations

Prediction   |   Ground truth

Predicted configuration approximates that at steady-state; 
new sensors will improve predictions and feedback in control

RL Truby*, C. Della Santina*, D. Rus. IEEE Robotics and Automation Letters, 2020. Accepted for IEEE ICRA 2020.

4x

𝑞"# = prediction; 𝑞# = ground truth

• Gray bar indicates one, 
3-second random 
actuation interval

• Dynamic motions are 
filtered, especially for 
∆x and ∆y

• Short time delay 
observed between	𝑞"#
and 𝑞#

• Dynamic behaviors are 
not fully captured
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D ˙̂q = �Kq �G(q) +A(q)u+  ̂(q) + ⌧̂ext,

⌧̂ext = �D(q̂ � q),

Sensing Forces
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Feedback
Linearization

If You Want to Stick to the Simple Model,
Consired Control-Driven Ways to Improve It

If You Want to Dig More
Do That in a Control Oriented Way

Feedback Model Based Control
Is Robust to Rough Approximations




